If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+2835x=0
a = 35; b = 2835; c = 0;
Δ = b2-4ac
Δ = 28352-4·35·0
Δ = 8037225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8037225}=2835$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2835)-2835}{2*35}=\frac{-5670}{70} =-81 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2835)+2835}{2*35}=\frac{0}{70} =0 $
| 35x^2+2835х=0 | | 35x^2+2835х=0 | | 35x^2+2835х=0 | | 35x^2+2835х=0 | | (t-12)*8=72 | | (t-12)*8=72 | | (t-12)*8=72 | | (t-12)*8=72 | | (t-12)*8=72 | | (t-12)*8=72 | | 10x^2+(-)7x+9=0 | | 4•(x+3)-x=24+x | | 7/11=63/x | | 5t+5=3t+7 | | 5x+3+97=180 | | 5x+3+97=180 | | 5x+3+97=180 | | 5x+3+97=180 | | 5x+3+97=180 | | 5x+3+97=180 | | 5(4h-2)=-150 | | 9/(w*0.9)=1 | | b.6 | | 0.20x+x=24 | | 0=9x^2-98x+198 | | -.5x+1=1/3x-4 | | 12x-23=17-1x | | 2^x=16^7500 | | 25^x+3=625^x-8 | | 25x^X+3=625^X-8 | | 15-c=10 | | 572=26/m |